ОПТИМИЗАЦИЯ УСЛОВИЙ ПРОБОПОДГОТОВКИ УГЛЕРОДИСТЫХ ГЕОЛОГИЧЕСКИХ ПРОБ ДЛЯ ПОСЛЕДУЮЩЕГО АНАЛИЗА МЕТОДОМ МАСС-СПЕКТРОМЕТРИИ С ИНДУКТИВНО-СВЯЗАННОЙ ПЛАЗМОЙ

Ю.В. Аношкина, Е.М. Асочакова, О.В. Бухарова, В.И. Отмахов, П.А. Тишин

Томский государственный университет 634050, Томск, пр. Ленина, 36 julia-seversk@mail.ru

Поступила в редакцию 15 мая 2012 г., после исправлений – 17 декабря 2012 г.

Приведены результаты лабораторных исследований по оптимизации пробоподготовки углеродистых горных пород с целью создания методики анализа. Исследования проводились с использованием стандартных образцов состава черного сланца СЛг-1, СЧС-1 и сланца метаморфического ССЛ-1 (Институт геохимии им. А. П. Виноградова СО РАН, г. Иркутск), сланца SCo-1 (США), зеленого сланца SGR-1b (США). Подобраны оптимальные условия кислотного разложения углеродистых горных пород с последующим определением элементов-примесей методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС). Изучено влияние предварительного обжига образцов на степень извлечения определяемых элементов. Оценена возможность и эффективность использования окислительных добавок на стадии обжига. *Ключевые слова*: углеродистые породы, черные сланцы, ИСП-МС, геологические образцы.

Аношкина Юлия Валерьевна – научный сотрудник ЦКП «Аналитический центр

геохимии природных систем» Томского государственного университета.

Область научных интересов: масс-спектрометрия с индуктивно-связанной плазмой, пробоподготовка геологических проб.

Автор 10 научных публикаций.

Асочакова Евгения Михайловна – младший научный сотрудник ЦКП «Аналитический центр геохимии природных систем» Томского государственного университета. Область научных интересов: физико-химические методы исследования минера-

лов и горных пород

Автор 17 научных публикаций

Бухарова Оксана Владимировна – кандидат геолого-минералогических наук, доцент кафедры минералогии и геохимии геолого-географического факультета Томского государственного университета.

Область научных интересов: минералогия, растровая электронная микроскопия Автор более 35 научных публикаций

Отмахов Владимир Ильич – доктор технических наук, профессор кафедры аналитической химии Томского государственного университета.

Область научных интересов: спектральный анализ, метрология, аккредитация. Автор более 120 научных публикаций

Тишин Платон Алексеевич – кандидат геолого-минералогических наук, доцент кафедры петрографии геолого-географического факультета Томского государственного университета.

Область научных интересов: геохимия метаосадочных пород Автор 86 научных публикаций

Исследование элементного состава горных пород различной природы является важной аналитической задачей, поскольку изучение закономерностей распределения элементов-примесей является неотъемлемой частью геолого-геохимических исследований. Как правило, для интерпретации геохимических данных используют следующие элементы: Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th и U [1]. В настоящее время предпочтение в определении элементовпримесей отдается методу масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) [2, 3].

Для проведения достоверного ИСП-МС анализа необходимо полное переведение пробы в раствор, поэтому особое внимание необходимо уделять оптимизации условий химической пробоподготовки. Черные сланцы являются одними из наиболее сложных геологических объектов для кислотного вскрытия образца, что связано с содержанием помимо оксидносиликатной матрицы графитизированного вещества, влияющего на полноту кислотного разложения [4, 5]. В литературных данных имеется большое количество схем разложения геологических объектов, в том числе, адаптированных к методу ИСП-МС [6-17]. При переведении сложных геологических образцов в раствор предпочтение отдается методу сплавления, имеющему, в свою очередь, ряд недостатков, основными из которых являются матричные помехи и высокий фон элементов плавня, отражающийся на дальнейших определениях. Эффективных методов кислотного разложения углеродистых пород в литературе не встречается. В связи с этим актуальным является совершенствование действующих и разработка новых схем кислотной пробоподготовки углеродистых горных пород для дальнейшего определения элементов-примесей методом ИСП-МС.

Экспериментальная часть

Объектами исследований для подбора оптимальных условий кислотного разложения были выбраны стандартные образцы состава сланца черного СЛг-1 и СЧС-1 Института геохимии им. А.П. Виноградова СО РАН (г. Иркутск). Для выполнения всех работ использовали деионизованную воду MilliQ Millipore (сопротивление более 18.2 $M\Omega/см$), хлороводородную и азотную кислоты марки «о.с.ч», дважды перегнанные в системе очистки кислот ниже температуры кипения Millestone SubPUR, фтористоводородную и хлорную кислоты марки «о.с.ч», нитрат лития (pure) производства Claisse (Канада). Для разложения проб применяли систему микроволнового разложения Millistone Start D. Определение элементов-примесей проводили с помощью массспектрометра с индуктивно-связанной плазмой Agilent 7500сх (Agilent Technologies). Внутренний стандарт индий (концентрация в конечном растворе составляла 10 мкг/л). Конечная концентрация азотной кислоты – 3 %, коэффициент разбавления пробы – около 1000. Настройку прибора и оптимизацию инструментальных параметров для получения максимального и хорошо воспроизводимого аналитического сигнала проводили по стандартному многоэлементному настроечному раствору (Tuning Solution, производство Agilent Technologies, США) содержащего по 1 мкг/л Li, Mg, Y, Ce, TI и Co. Оптимальные параметры работы прибора, совмещающие высокую чувствительность и эффективность плазмы: мощность высокочастотного генератора 1500 Вт, отраженная мощность менее 20 Вт, поток газа-носителя 0.9-0.95 л/мин, поток поддувочного газа – 0.19-0.21 л/мин, скорость подачи

пробы – 0.1 об/мин, тип распылителя – MicroMist (микроаэрозольный). Градуировку измерений проводили по мультиэлементным стандартным образцам Agilent Technologies. Влияние спектральных наложений при определении элементов на квадрупольном массспектрометре учитывали программным методом математической коррекции.

Химическая подготовка образцов

Использование схем кислотного разложения геологических объектов, предложенных в работах [6, 8, 11, 13-18], не позволило вскрыть пробы анализируемых объектов без осадка. Для конструктивной оптимизации алгоритма пробоподготовки нами был проведен ряд экспериментов по выявлению и изучению невскрываемой фракции после каждой стадии кислотного разложения. В качестве опорной схемы был выбран метод разложения горных пород, обобщенный из литературных источников [6, 10, 11, 13, 18]. Навеску пробы массой 0.1 г разлагали в тефлоновой капсуле микроволновой системы Milestone Start D в смеси HF : HNO, (3:1) при температуре 200 °С. Фториды металлов разрушали путем выпаривания сухого остатка пробы в концентрированной соляной кислоте. Затем хлориды переводили в нитраты путем добавления концентрированной азотной кислоты.

Изучение продуктов промежуточных реакций

Осадки, образующиеся на каждой стадии разложения, были отобраны и изучены в сканирующем режиме на растровом электронном микроскопе (PЭM) TESCAN Vega LMU, оснащенным энергодисперсионным спектрометром Oxford Instruments INCA Energy 350. Надосадочная жидкость была проанализирована методом ИСП-МС.

Исследование элементно-структурных изменений в черных сланцах в процессе кислотного разложения по предложенной схеме также проводили с помощью атомно-эмиссионной и ИК-спектроскопии. Элементный состав находили по специально созданной методике [19] прямого определения основных компонентов с помощью спектрального комплекса «Гранд». ИК-спектры регистрировали на приборе ИК-Фурье спектрометр «Nicolet 6700».

Выбор параметров предварительной термической обработки

С целью выявления оптимальной температуры предварительной термической обработки углеродистых горных пород образец был подвержен синхронному термическому анализу (**СТА**).

При исследовании стандартного образца черного сланца (СЛг-1) воспользовались методикой, предложенной в работе [20]. В качестве основного критерия при определении углистого вещества была выбрана температура начала экзотермического эффекта. Образец СЛг-1 содержит термоактивные минералы, такие как хлорит, карбонаты, серицит и монтмориллонит, термические эффекты которых регистрируются в одинаковых с углистым веществом интервалах температур, что в свою очередь делает невозможным диагностику углерода. В этом случае рекомендуется двукратное нагревание образца. На первом этапе проба нагревалась до 1100 °С со скоростью 40 °С в минуту в воздушной среде с плотно прилегающими крышками. Тем самым избавлялись от термических эффектов, характерных для минералов анализируемого образца (рис. 1). Затем эта же проба нагревалась в открытых тиглях по следующей температурной программе: до 700 °C с скоростью 40 °C / мин, до 1000 °C с скоростью 5 °C / мин (рис. 2).

Интенсификация предварительной термической обработки

Выявленная методом СТА температура выжигания углеродистого вещества составляет 800-940 °С высока. Эффективность сухого озоления повышается при введении в пробу ряда веществ, ускоряющих окисление и, в ряде случаев, предотвращающих улетучивание некоторых компонентов золы и препятствующих взаимодействию компонентов золы с материалом тигля [21]. При этом

Рис. 1. Термограмма пробы СЛг-1, первый нагрев

Рис. 2. Термограмма пробы СЛг-1, второй нагрев в открытых тиглях

1 - 0,11(La, Ce, Nd)₂O·0,16Al₂O₃·1,90 F

2 - 0,02Na2O · 0,09MgO · 0,07Ce (La, Nd)2O3 · 0,07Y2O3 · 0,11Al2O3 · 1,98F

Рис. 3. Комковатые обособления соединений РЗЭ в матрице осадка (изображение получено в РЭМ)

температуру проведения обжига таким образом можно понизить. Для интенсификации предложенной схемы химической пробоподготовки было изучено влияние окисляющих добавок на стадию предварительного обжига. В качестве интенсификаторов исследовались нитрат свинца [22] и лития.

Результаты и обсуждение

Структура и состав продуктов промежуточных реакций. Анализ осадков, образующихся на разных стадиях в процессе химической пробоподготовки, с помощью метода растровой электронной микроскопии с рентгеноспектральным микроанализом показал, что после проведения микроволнового разложения в смеси фтороводородной и азотной кислот происходит разложение матрицы с образованием нерастворимых фторидов алюминия, калия и железа. Состав осадка можно представить в виде комплексного фторидно-оксидного соединения: 0.01К₂O·0.08(Mg, Fe) О·0.08Al₂O₃·1.01F с незначительными примесями Y, Zr и Ta. При этом в твердой фазе наблюдаются участки, обогащенные нерастворимыми фторидами редкоземельных элементов (РЗЭ). После добавления соляной и азотной кислот происходит образование хлопьевидных агрегатов фторида алюминия и изометричных шестигранных индивидов фторида калия: 0.03Na₂O·0.1MgO·0.13Al₂O₃·1.4F и 0.01Na₂O·0.05(Mg, Fe)O·0.05Al₂O₃·0.09SiO₂·0.13K₂O· 1.17F соответственно. После добавления соляной кислоты фториды РЗЭ частично переходят в раствор, однако в матрице фторида алюминия можно наблюдать комковатые обособления, содержащие La, Ce, Nd и Y (рис. 3).

Данные атомно-эмиссионных спектральных определений состава продуктов промежуточных реакций приведены в табл. 1. В ней, на примере СЛг-1, видно, что вскрытие пробы приводит лишь к частичному удалению кремния после обработки пробы смесью HF : HNO₃ в системе микроволнового разложения. На последующих стадиях разложения

Таблица 1

Элемент	СЛг-1 (аттестованное значение)	СЛг-1 (HF, HNO ₃)	СЛг-1 (HF, HNO ₃ , MW*)	СЛг-1 (HF, HNO ₃ , MW*, HCI)	СЛг-1 (HF, HNO ₃ , MW*, HCl, HNO ₃)
AI	4.10	23 ± 2	34 ± 3	30 ± 3	34 ± 4
Са	0.76	4.6 ± 0.5	4.3 ± 0.4	4.1 ± 0.4	5.0 ± 0.5
Fe	2.61	4.4 ± 0.4	6.5 ± 0.7	5.0 ± 0.5	9.5 ± 1.1
Mg	1.84	5.7 ± 0.6	5.6 ± 0.6	6.3 ± 0.6	5.2 ± 0.5
Mn	0.09	0.40 ± 0.04	0.30 ± 0.03	0.30 ± 0.03	0.40 ± 0.04
Si	26.91	11.5 ± 1.1	9.1 ± 1.1	9.2 ± 1.1	8.3 ± 1.1
Ti	0.53	0.72 ± 0.12	0.50 ± 0.05	0.81 ± 0.12	1.11 ± 0.12

Результаты атомно-эмиссионного спектрального анализа образца сланца черного СЛг-1 на различных стадиях пробоподготовки, % мас. (*n* = 10, *P* = 0.95)

Примечание: МW – микроволновое разложение проб.

существенного изменения состава осадка не происходит. Аналогичные результаты были получены для СО СЧС-1. Анализ ИК-спектров показал (рис. 4 и 5), что после первой стадии обработки кислотами исчезают полосы поглощения алюмосиликатов и появляется широкая полоса поглощения

Рис. 4. ИК-спектры пропускания черного сланца СЛг-1 в зависимости от стадий пробоподготовки: 1 – СЛг-1 не обожженный; 2 – СЛг-1, обработанный смесью HF: HNO₃ в открытой системе; 3 – СЛг-1, обработанный смесью HF: HNO₃ в микроволновой системе; 4 – СЛг-1, обработанный смесью HF: HNO₃ в микроволновой системе; 5 – СЛг-1, обработанный смесью HF: HNO₃ в микроволновой системе и переведенный в хлориды; 5 – СЛг-1, обработанный смесью HF: HNO₃ в микроволновой системе и переведенный в хлориды; 5 – СЛг-1, обработанный смесью HF: HNO₃ в микроволновой системе и переведен в нитраты

Рис. 5. ИК-спектры, пропускания черного сланца СЧС-1 в зависимости от стадий пробоподготовки; 1 – СЧС-1 не обожженный; 2 – СЧС-1, обработанный смесью HF : HNO₃ в открытой системе; 3 – СЧС-1, обработанный смесью HF : HNO₃ в микроволновой системе; 4 – СЧС-1, обработанный смесью HF:HNO₃ в микроволновой системе и переведенный в хлориды; 5 – СЧС-1, обработанный смесью HF : HNO₃ в микроволновой системе и переведенный в нитраты

с максимумом 630 см⁻¹, которую можно отнести к колебанию связи AI-F в молекуле AIF₃·H₂O, для которой характерна широкая полоса поглощения в диапазоне частот от 500 до 700 см⁻¹[23, 24]. Кроме того, подтверждением формы существования данной молекулы является наличие во всех спектрах полосы поглощения в районе 1640 см⁻¹ относящейся к деформационным колебаниям молекул воды. В области 3600 см⁻¹ также появляются размытые полосы поглощения, которые можно отнести к колебаниям -OH групп [25].

Предварительная термическая обработка. На кривой ДСК регистрируется пологий экзотермический эффект. Температура начала экзоэффекта составляет 803 °C. Пик 940 °C отвечает началу интервала потери массы, что свидетельствует о выгорании углерода из пробы путем перехода в углекислый газ. Результаты эксперимента подтверждают наличие в пробе графитизированного вещества, а растянутый экзотермический эффект говорит об его сложном строении, в частности – о наличии большого разброса размеров чешуек графита [21].

Температурные параметры, полученные методом СТА, позволили выделить диапазон максимального выжигания углистой составляющей пробы. В соответствии с полученными данными был поставлен эксперимент для оценки необходимости стадии предварительной термической обработки. Образцы обжигались 2, 8, 15 часов при температурах 500 и 850 °С в муфельной печи. Температура 500 °С была выбрана как наиболее часто встречающаяся в работах [22, 23] для обжига горных пород. Температура 850 °С установлена экспериментально и согласуется со средней температурой экзотермического пика углистого вещества. Результаты определения некоторых элементов-примесей с использованием усовершенствованной схемы пробоподготовки методом ИСП-МС приведены в табл. 2.

Из полученных данных видно, что увеличение экспозиции обжига особенно влияет на извлечение **P3Э**. Это может быть связано с характером распределения углистого вещества в породе. Было выдвинуто предположение о возможности обволакивания углеродистым веществом акцессорных фаз, вследствие чего эти минералы становятся инертными к действию кислот, используемых в пробоподготовке. Термическая обработка позволяет удалить углеродистую пленку с поверхности минерала, что делает возможным переведение его в раствор.

Оптимизация условий пробоподготовки. Исходя из проведенных исследований, была оптимизирована предложенная схема кислотного разложения углеродистых пород. Образец подвергали предварительной термической обработке в течение 8 часов при температуре 850 °C. Пробу массой 0.1 г обрабатывали 10 мл концентрированной HF в течение 4-х часов при температуре 70 °C для максимальной отгонки кремния в виде фторида. После этого в реакционную смесь добавляли 1 мл концентрированной HNO₃. Микроволновое разложение проводили с постепенным

Таблица 2

Результаты определения элементов-примесей в стандартном образце СЛг-1 в зависимости от режима обжига, г/т (*n* = 10, *P* = 0.95)

Эле-	C + A	Без	500 °C			850 °C			
мент		обжига	2ч	8ч	15 ч	2ч	8ч	15 ч	
Be	2.4*	1.9 ± 0.2	1.9 ± 0.2	2.0 ± 0.2	2.1 ± 0.2	2.3 ± 0.2	2.4 ± 0.2	2.3 ± 0.2	
Sc	20 ± 3	13 ± 2	15 ± 2	17 ± 2	15 ± 2	18 ± 2	21 ± 2	19 ± 2	
Sr	140 ± 20	130 ± 10	130 ± 10	140 ± 10	130 ± 10	140 ± 10	140 ± 10	140 ± 10	
Nb	12 ± 2	10 ± 2	10 ± 2	11 ± 2	11 ± 2	12 ± 2	12 ± 2	12 ± 2	
Cs	4.0 ± 0.7	3.6 ± 0.3	3.8 ± 0.3	4.0 ± 0.4	3.9 ± 0.3	3.9 ± 0.3	4.2 ± 0.4	4.3 ± 0.4	
La	28 ± 5	20 ± 2	23 ± 2	23 ± 2	23 ± 2	24 ± 2	28 ± 3	27 ± 2	
Ce	53 ± 8	42 ± 4	49 ± 4	49 ± 4	49 ± 4	50 ± 5	53 ± 5	53 ± 5	
Pr	6.2 ± 1.2	6.1 ± 0.6	6.1 ± 0.6	5.9 ± 0.5	5.9 ± 0.5	6.3 ± 0.6	6.3 ± 0.6	6.2 ± 0.6	
Nd	25 ± 4	23 ± 2	23 ± 2	23 ± 2	22 ± 2	25 ± 2	25 ± 2	25 ± 2	
Sm	5.4 ± 0.8	4.7 ± 0.7	4.9 ± 0.4	4.7 ± 0.4	4.3 ± 0.4	4.7 ± 0.4	5.4 ± 0.5	5.4 ± 0.5	
Eu	1.2 ± 0.2	1.1 ± 0.2	1.1 ± 0.2	1.1 ± 0.2	0.9 ± 0.2	1.1 ± 0.2	1.3 ± 0.2	1.1 ± 0.2	
Tb	0.74*	0.43 ± 0.04	0.42 ± 0.04	0.45 ± 0.04	0.36 ± 0.03	0.41 ± 0.04	0.68 ± 0.06	0.62 ± 0.06	
Lu	0.40 ± 0.07	0.27 ± 0.02	0.25 ± 0.02	0.28 ± 0.02	0.22 ± 0.02	0.23 ± 0.02	0.41 ± 0.04	0.38 ± 0.03	
Hf	4.7 ± 0.7	4.6 ± 0.4	4.5 ± 0.4	4.5 ± 0.4	4.6 ± 0.4	4.4 ± 0.4	4.7 ± 0.4	4.6 ± 0.4	
Та	0.7*	0.78 ± 0.07	0.67 ± 0.06	0.72 ± 0.06	0.74 ± 0.07	0.70 ± 0.06	0.71 ± 0.06	0.72 ± 0.06	
Pb	15 ± 3	15 ± 2	15 ± 2	14 ± 2	15 ± 2	15 ± 2	15 ± 2	15 ± 2	
Th	7 ± 1	6 ± 1	7 ± 1	7 ± 1	7 ± 1	6 ± 1	7 ± 1	7 ± 1	
U	1.7 ± 0.2	1.5 ± 0.2	1.5 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	1.7 ± 0.2	1.7 ± 0.2	

Примечания: «*» – значения, установленные ориентировочно; $C_{attect} \pm \Delta$ – аттестованные значения

поднятием температуры до 220 °С (давление до 20 атм). После остывания образцы количественно переносили в тефлоновые бюксы на 50 мл, выпаривали «до капли». Остаток обрабатывали 1 мл HCIO₄ и оставляли на ночь. После этого пробу выпаривали до сухого остатка. Остаток пробы двукратно выпаривали в 6.2 М HCI при температуре 90 °С. Хлориды переводили в нитраты путем двукратного добавления концентрированной HNO₃. В конечном итоге сухой остаток растворяли в 15 % растворе HNO₄.

Интенсификация пробоподготовки. Полученная схема проведения химического разложения углеродистых горных пород продолжительна во времени. Кроме того, результаты по тяжелым РЗЭ и Y имеют отклонение от аттестованного значения 30 %.

Для проведения достоверного ИСП-МС при выборе интенсификатора пробоподготовки стоит учитывать возможные матричные помехи добавляемых компонентов. Анализ модельных растворов с вариацией матричных компонентов по составу

и концентрации показал значительное падение аналитических сигналов с увеличением концентрации матричного компонента и его атомной массы, что объясняется смещением равновесия ионизации в индуктивно связанной плазме, возрастанием плотности объемного заряда и увеличением рассеяния ионов в ионном пучке [26]. В качестве окисляющей добавки был выбран нитрат лития, поскольку литий, входящий в состав окислителя, имеет меньшую атомную массу, и оказывает тем самым минимальное влияние на изменение кривой чувствительности прибора ИСП-МС (рис. 6). Исходя из экспериментальной базы были подобраны оптимальные соотношения времени и концентрации применяемой добавки: 500 °C, 2 часа, соотношение массы пробы к массе добавки составляет 2:1.

Сопоставление данных по двум способам проведения предварительной термической обработки (рис. 7) показало, что добавление нитрата лития позволяет получать более достоверные результаты. Увеличение извлечения части элементов объяс-

Рис. 7. Отклонение результатов анализа СЛг-1 (С_(ИСП-МС)) от аттестованного значения (С_{Аттест.}) при разных способах предварительной термической обработки.

Сравнение результатов ИСП-МС измерений с аттестованным значением по критерию Стьюдента на примере СЛг-1 (предварительный обжиг с добавлением LiNO₃) (*P* = 0.95, *n* = 12)

Элемент	$C_{attect} \pm \Delta$, г/т	Среднее значение, г/т	<i>t</i> _{эксп.}	t _{reop} .
Ве	2.4*	2.2 ± 0.7	0.33	2.20
Sc	20 ± 3	19 ± 4	0.53	2.20
V	122 ± 15	124 ± 25	0.63	2.20
Cr	116 ± 8	120 ± 26	0.94	2.20
Со	20 ± 3	22 ± 5	0.44	2.20
Ni	50 ± 7	52 ± 11	0.82	2.20
Cu	39 ± 7	40 ± 9	0.08	2.20
Zn	97 ± 13	94 ± 21	0.12	2.20
Ga	18 ± 3	18 ± 4	0.22	2.20
Rb	112 ± 11	111 ± 19	0.09	2.20
Sr	142 ± 15	136 ± 25	0.54	2.20
Y	26 ± 4	24 ± 5	0.39	2.20
Zr	176 ± 16	178 ± 20	0.06	2.20
Nb	12 ± 2	11 ± 3	0.18	2.20
Cs	4.0 ± 0.7	4.2 ± 1.3	0.52	2.20
Ва	376 ± 46	372 ± 51	0.14	2.20
La	28 ± 5	28 ± 6	0.03	2.20
Се	53 ± 8	55 ± 12	0.42	2.20
Pr	6.20 ± 0.12	6 ± 2	0.27	2.20
Nd	25 ± 4	26 ± 6	0.35	2.20
Sm	5.4 ± 0.8	5 ± 2	0.08	2.20
Eu	1.2 ± 0.2	1.2 ± 0.4	0.17	2.20
Gd	4.5 ± 0.8	4.6 ± 1.5	0.25	2.20
Tb	0.74*	0.7 ± 0.2	0.42	2.20
Dy	4.4*	4.4 ± 1.4	0.04	2.20
Но	0.92*	0.9 ± 0.3	0.21	2.20
Er	2.4*	2.3 ± 0.8	0.17	2.20
Tm	0.33*	0.34 ± 0.11	0.20	2.20
Yb	2.7 ± 04	2.6 ± 0.8	0.14	2.20
Lu	0.40 ± 0.07	0.36 ± 0.11	0.61	2.20
Hf	4.7 ± 0.7	4.6 ± 1.5	0.03	2.20
Та	0.7*	0.7 ± 0.2	0.08	2.20
W	3.3*	3.25 ± 1.04	0.05	2.20
Pb	14.9 ± 2.8	16 ± 3	0.76	2.20
Th	7.1 ± 1.1	7 ± 2	0.77	2.20
U	1.65 ± 0.23	1.7 ± 0.6	0.34	2.20

Примечания: «*» – значения, установленные ориентировочно; $C_{_{aттест}} \pm \Delta$ – аттестованные значения; $t_{_{aксп.}}$ – экспериментальное значение коэффициента Стьюдента; $t_{_{reop}}$. – теоретическое значение коэффициента Стьюдента.

Результаты ИСП-МС определения содержаний элементов-примесей в российских геологических стандартных образцах, г/т (*n* =20)

Эле-	СЛг-1		СЧС-1		ССЛ-1	
мент	$C_{\text{attect}} \pm \Delta$	$C_{cn} \pm \Delta$	$C_{\text{attect}} \pm \Delta$	$C_{cp} \pm \Delta$	$C_{\text{attect}} \pm \Delta$	$C_{cn} \pm \Delta$
Be	2.4*	2.2 ± 0.7	2.0 ± 0.4	2.0 ± 0.6	3.5 ± 0.7	3.7 ± 1.2
Sc	20 ± 3	19 ± 4	23 ± 4	22 ± 5	22 ± 2	16 ± 4
V	122 ± 15	114 ± 25	148 ± 18	154 ± 36	100 ± 10	111 ± 25
Cr	116 ± 8	120 ± 26	128 ± 10	130 ± 35	70 ± 10	80 ± 19
Со	20 ± 3	22 ± 5	13 ± 2	12 ± 3	27 ± 4	27 ± 5
Ni	50 ± 7	52 ± 11	39 ± 6	40 ± 9	45 ± 6	42 ± 9
Cu	39 ± 7	40 ± 9	34 ± 6	27 ± 4	46 ± 8	43 ± 5
Zn	97 ± 13	94 ± 21	96 ± 11	88 ± 19	100 ± 20	96 ± 19
Ga	18 ± 3	18 ± 4	21 ± 2	21 ± 5	15*	23 ± 5
Rb	112 ± 11	111 ± 19	140 ± 10	137 ± 30	150 ± 10	124 ± 27
Sr	142 ± 15	136 ± 25	150 ± 15	160 ± 35	39 ± 5	39 ± 8
Y	26 ± 4	24 ± 5	28 ± 5	23 ± 5	48 ± 6	41 ± 9
Zr	176 ± 16	178 ± 20	176 ± 16	177 ± 39	230 ± 49	224 ± 49
Nb	12 ± 2	11 ± 3	11 ± 2	12 ± 3	16 ± 4	17 ± 4
Cs	4.0 ± 0.7	4.2 ± 1.3	4.4 ± 0.8	4.5 ± 1.4	7*	6 ± 2
Ва	376 ± 46	372 ± 51	720 ± 120	736 ± 125	950 ± 40	881 ± 149
La	28 ± 5	28 ± 6	30 ± 5	32 ± 7	-	46 ± 10
Ce	53 ± 8	55 ± 12	58 ± 11	69 ± 15	90 ± 20	100 ± 17
Pr	6.20 ± 0.12	6 ± 2	6.5*	8 ± 3	-	12 ± 3
Nd	25 ± 4	26 ± 6	28 ± 5	32 ± 7	-	46 ± 10
Sm	5.4 ± 0.8	5 ± 2	5.7 ± 0.9	6 ± 2	-	9 ± 2
Eu	1.2 ± 0.2	1.2 ± 0.4	1.2 ± 0.2	1.3 ± 0.4	-	1.8 ± 0.5
Gd	4.5 ± 0.8	4.6 ± 1.4	6.1 ± 1.1	6 ± 2	-	8 ± 2
Tb	0.74*	0.7 ± 0.2	0.95 ± 0.15	0.9 ± 0.2	-	1.2 ± 0.3
Dy	4.4*	4.4 ± 1.4	5.6 ± 1.1	4.9 ± 1.1	-	7 ± 2
Но	0.92*	0.9 ± 0.3	1.1*	1.0 ± 0.3	-	1.5 ± 0.4
Er	2.4*	2.3 ± 0.8	3.3*	2.9 ± 0.8	-	4.3 ± 1.3
Tm	0.33*	0.34 ± 0.11	0.5*	0.40 ± 0.12	-	0.61 ± 0.12
Yb	2.7 ± 0.4	2.6 ± 0.4	2.9 ± 0.4	2.6 ± 0.4	5 ± 1	4.2 ± 1.1
Lu	0.40 ± 0.07	0.36 ± 0.11	0.44 ± 0.07	0.47 ± 0.14	0.6*	0.7 ± 0.2
Hf	4.7 ± 0.7	4.6 ± 1.5	4.1 ± 0.7	4.5 ± 1.5	-	5.7 ± 1.5
Та	0.7*	0.7 ± 0.2	0.86 ± 0.16	0.9 ± 0.3	-	1.2 ± 0.4
W	3.3*	3.25 ± 1.04	3.5*	3.8 ± 1.2	-	1.6 ± 0.5
Pb	14.9 ± 28	16 ± 3	8.2 ± 1.4	9 ± 3	15 ± 1	14 ± 3
Th	7.1 ± 1.1	7 ± 2	8.2 ± 1.2	9 ± 3	12*	12 ± 3
U	1.65 ± 0.23	1.7 ± 0.6	2.1 ± 0.2	2.15 ± 0.7	2*	2.7 ± 0.8

Примечания: «*» – значения установленные ориентировочно; «-» – значения отсутствуют; ($C_{aттест.} \pm \Delta$) – аттестованные значения; ($C_{cp} \pm \Delta$) – значения, определенные методом ИСП-МС по разработанной методике анализа.

Сравнение полученных результатов по неаттестованным значениям для СО ССЛ-1 с опубликованными данными, г/т

Эле- мент	$C_{\rm cp.} \pm \Delta$ [10]	$C_{\rm cp.} \pm \Delta$
Ga	23 ± 2	23 ± 5
Cs	6.8 ± 0.8	5.7 ± 1.8
La	49 ± 3	46 ± 10
Pr	12 ± 1	12 ± 3
Nd	47 ± 3	46 ± 10
Sm	9.7 ± 0.5	9 ± 2
Eu	1.9 ± 0.1	1.8 ± 0.5
Gd	8.7 ± 0.4	8 ± 2
Tb	1.4 ± 0.1	1.2 ± 0.3
Dy	8.3 ± 0.4	7 ± 2
Ho	1.7 ± 0.1	1.5 ± 0.4
Er	5.2 ± 0.3	4.3 ± 1.3
Tm	0.77 ± 0.04	0.67 ± 0.12
Lu	0.75 ± 0.05	0.66 ± 0.12
Hf	6.1 ± 0.4	5.7 ± 1.5
Та	1.1 ± 0.1	1.2 ± 0.4
W	1.9 ± 0.2	1.6 ± 0.5
Th	14 ± 1	12 ± 3
U	3.1 ± 0.2	2.7 ± 0.8

Примечания: ($C_{cp} \pm \Delta$) – значения, определенные методом ИСП-МС по разработанной методике анализа; ($C_{cp} \pm \Delta$) – значения, определенные методом ИСП-МС по [10].

няется более эффективным процессом окисления углеродистого вещества с применением нитрата лития по сравнению с классической термической обработкой. Отклонения полученных результатов с использованием нитрата лития от аттестованного значения не превышают 11 %.

Точность полученных результатов была оценена по *t*-критерию. Из табл. З можно сделать вывод о том, что расхождение между аттестованным значением СО и найденной величиной незначимы. Систематическая составляющая погрешности отсутствует, разброс результатов обусловлен случайной составляющей погрешности.

По предложенной схеме пробоподготовки были проанализированы стандартные образцы СЛг-1, СЧС-1, ССЛ-1, SCo-1 и SGR-1b (табл. 4-6). Предел обнаружения элементов представлен в табл. 6.

Для ряда элементов данные в паспортах стандартных образцов приведены ориентировочно или вообще отсутствуют аттестованные значения. В этом случае полученные результаты сравнивали с опубликованными [10, 27]. Результаты сравнения для ССЛ-1 приведены в табл. 5. Приведенные результаты хорошо согласуются между собой.

Заключение

В результате проведенных исследований предложен алгоритм пробоподготовки углеродистых горных пород методом кислотного разложения. Показана необходимость и эффективность стадии предварительного обжига углеродистых пород с использованием добавки нитрата лития. Предложенная методика ИСП-МС определения элементного состава углеродистых горных пород позволяет получать достоверные значения концентраций 36 элементов. Методика отработана на 5 стандартных образцах состава горных пород. Полученные новые данные о содержании примесных элементах в отечественных и зарубежных стандартных образцах могут быть использованы в аналитической практике.

ЛИТЕРАТУРА

1. Интерпретация геохимических данных / Е.В. Скляров и [др.]. М.: Интермет Инжиниринг, 2001. 288 с.

2. Jarvis. K.E. Inductively coupled plasma mass spectrometry, a new analytical technique for the rapid or ultratrace level determination of rare-earth elements in geological materials // Chem. Geol. 1988. V. 68. P. 31-39.

3. Пупышев А.А., Суриков В.Т. Массспектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.

4. Tourtelot H.A. Black shale – its deposition and diagenesis // Clays and clay minerals. 1979. V.27, № 5. P. 313-321.

5. Кориш Е.Х., Савко К.А. Геохимия высокоуглеродистых сланцев Тим-Ястребовской структуры (Воронежский кристаллический массив) // Вестник ВГУ. Серия геология. 2010, № 2. С.108-116.

6. Liang Q., Jing H., Conrad G. Determination of trace elements in granites by inductively coupled plasma mass spectrometry // Talanta. 2000. V. 51. P. 507-513.

7. Sholkovitz E.R. Rare earth elements in marine sediments and geochemical standards // Chem. Geol. 1990. V. 88. P. 333–347.

8. Determination of scandium, yttrium and rare earth elements in rocks by high resolution inductively coupled plasma mass spectrometry / P. Robinson et [al.] // Geostandards Newslett. 1999. V. 23. P. 31-46.

9. Determination of Rare Earth Elements in Geological Reference materials: A Comparative Study by INAA and ICP-MS / F.D. Kin et [al.] // Geostandards Newsletter. 1999. V. 23, № 1. P. 47-58.

10. Новые данные по определению редких и рассеянных элементов в геологических стандартных образцах методом масс-спектрометрии с индуктивно-связанной плазмой / И.Н. Мысовская и [др.] // Заводская лаборатория. Диагностика материалов. 2009. Т. 75, № 10. С. 60-66.

Результаты ИСП-МС определения содержаний элементов-примесей в международных геологических стандартных образцах, г/т (*n* = 20)

0-	SCo-1		SGR-1		ПО, мкг/л
Элемент	$C_{attect} \pm \Delta$	$C_{\rm cp.} \pm \Delta$	$C_{\text{аттест.}} \pm \Delta$	$C_{\rm cp.} \pm \Delta$	
Be	1.8 ± 0.2	2.2 ± 0.7	-	1.3 ± 0.3	0.02
Sc	11 ± 1	12 ± 3	4.6 ± 0.7	5.1 ± 1.1	0.2
V	130 ± 13	138 ± 20	130 ± 6	132 ± 19	0.2
Cr	68 ± 5	64 ± 18	30 ± 3	34 ± 7	0.4
Со	11.0 ± 0.8	11 ± 2	12 ± 1.5	12 ± 2	0.02
Ni	27 ± 4	32 ± 7	29*	36 ± 7	1.1
Cu	29 ± 2	24 ± 3	66 ± 9	58 ± 12	1.4
Zn	100 ± 8	103 ± 22	74 ± 9	66 ± 14	1.4
Ga	15*	17 ± 4	12*	9 ± 2	0.02
Rb	110 ± 4	110 ± 24	-	74 ± 16	0.2
Sr	170 ± 16	177 ± 38	420 ± 30	406 ± 81	0.1
Y	26 ± 4	22 ± 5	13*	10 ± 2	0.02
Zr	160 ± 30	143 ± 29	53*	47 ± 10	1.1
Nb	11*	12 ± 3	5.2*	6.1 ± 1.4	0.03
Cs	-	7 ± 2	5.2 ± 0.3	4.8 ± 1.1	0.03
Ва	570 ± 30	587 ± 90	290 ± 40	291 ± 63	1
La	30 ± 1	29 ± 6	20 ± 1.8	19 ± 4	0.02
Ce	62 ± 6	58 ± 11	36 ± 4	35.4 ± 8	0.01
Pr	6.6*	6.8 ± 1.4	-	4.0 ± 0.9	0.02
Nd	26 ± 2	26 ± 5	16 ± 1.7	14 ± 3	0.004
Sm	-	5.0 ± 1.1	2.7 ± 0.3	2.6 ± 0.6	0.01
Eu	-	1.2 ± 0.3	0.56 ± 0.09	0.51 ± 0.11	0.004
Gd	-	4.5 ± 0.9	2*	2.2 ± 0.5	0.01
Tb	-	0.65 ± 0.14	-	0.31 ± 0.07	0.003
Dy	-	3.9 ± 0.9	1.9*	1.8 ± 0.4	0.01
Но	-	0.8 ± 0.2	0.4*	0.36 ± 0.07	0.002
Er	-	2.2 ± 0.5	1.1 ± 0.14	1.0 ± 0.2	0.005
Tm	-	0.33 ± 0.07	0.17*	0.15 ± 0.03	0.001
Yb	-	2.2 ± 0.5	0.94*	0.97 ± 0.14	0.003
Lu	-	0.32 ± 0.07	-	0.15 ± 0.03	0.002
Hf	-	3.4 ± 0.8	1.40 ± 0.14	1.3 ± 0.3	0.0007
Та	-	0.9 ± 0.2	-	0.34 ± 0.07	0.1
W	1.4*	1.4 ± 0.3	2.6 ± 0.06	2.4 ± 0.5	0.001
Pb	31 ± 3	31 ± 6	38 ± 4	38 ± 8	0.004
Th	9.7 ± 0.5	9 ± 2	4.8 ± 0.21	4.62 ± 1.01	0.01
U	-	2.8 ± 0.6	5.4 ± 0.4	5.2 ± 1.1	0.004

Примечания: «*» – значения, установленные ориентировочно; «-» – значения отсутствуют; ($C_{attect} \pm \Delta$) – аттестованные значения; ($C_{cp} \pm \Delta$) – значения, определенные методом ИСП-МС по разработанной методике анализа; ПО – предел обнаружения.

11. Атомно-эмиссионное (с индуктивно-связанной плазмой) определение 13 редкоземельных элементов и иттрия в геологических образцах после микроволнового разложения / О.Н. Гребнева и [др.] // Ж. аналитической химии. 1996. Т. 51, № 9. С. 1009-1013.

12. Лантаноиды во флюидных включениях, кварце и зеленых сланцах из золотоносных и безрудных кварцево-жильных зон советского кварц-золоторудного месторождения, Енисейский кряж, Россия / А.А. Томиленко и [др.] // Геохимия. 2008. №4. С. 438-444.

13. Редкие элементы и эволюция гранитного расплава (на примере Раумидского массива, Ю. Памир) / Ю. А. Костицын и [др.] // Геохимия. 2007. № 10. С. 1057-1069.

14. Особенности поведения редкоземельных элементов при масс-спектрометрическом с индуктивно-связанной плазмой определении их в черных сланцах / Е.В. Смирнова и [др.] // Ж. аналитической химии. 2003. Т. 58, № 5. С. 595-603.

15. Микроволновая подготовка углеродсодержащих сульфидных руд и продуктов их обогащения к определению сурьмы и мышьяка / Е.С. Нехода и [др.] // Заводская лаборатория. Диагностика материалов. 2007. Т. 73, № 6. С. 3-5

16. Анализ силикатных материалов с использованием микроволновой пробоподготовки / Н.В. Корсакова и [др.] // Заводская лаборатория. Диагностика материалов. 2009. Т. 75, № 4. С. 23-27.

17. Determination of rare earth elements in black shales by inductively coupled plasma mass spectrometry / E.V. Smirnova et [al.] // Spectrochim. Acta. Part B. 2003. V. 58. P. 329-340.

18. Палесский С.В. Определение редких и рассеянных элементов методом масс-

спектрометрии с индуктивно-связанной плазмой. Дис. ... к.х.н. Новосибирск, 2008. 128 с.

19. Оптимизация условий проведения атомно-эмиссионного анализа порошковых проб сложного состава на графитовой основе / В.И. Отмахов и [др.] // Заводская лаборатория. Диагностика материалов. 2012. Т. 78, № 1. С. 82-85.

20. Термический анализ минералов и горных пород / В.П. Иванова и [др.]. Л.: Недра, 1974. 393 с.

21. Бок Р. Методы разложения в аналитической химии. М.: Химия. 1984. 432 с.

22. Комплексообразование как причина концентрирования платиновых металлов углеродистым веществом пород и потерь этих металлов в аналитических операциях / Г.М. Варшал и [др.] // Геология и генезис месторождений платиновых металлов. 1994. С. 277-286.

23. Richard A. Nyquist R.A., Kagel R.O. Infrared spectra of inorganic compounds (3800-45 cm⁻¹). London: Academic Press. Inc., 1997. P. 276.

24. Харитонов Ю.Я., Давидович Р.Л., Костин В.И. Атлас длинноволновых инфракрасных спектров поглощения комплексных фторидов металлов III-V групп и уранила. М.: Наука, 1977. 284 с.

25. Юхневич Г.В. Инфракрасная спектроскопия воды. М.: Наука, 1973. 207с.

26. Карандашев В.К. Использование метода масс-спектрометрии с индуктивно-связанной плазмой в элементном анализе объектов окружающей среды // Заводская лаборатория. Диа-гностика материалов. 2007. Т. 73, № 1. С. 12-22.

27. Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb and Ta in Geological Reference Materials G-2, G-3, Sco-1 and WGB-1 by Sodium Peroxide Sintering and Inductively Coupled Plasma-Mass Spectrometry / Th. Meisel et [al.] // Geostandards Newsletter. 2002. V. 26, № 1. P. 53-61.

OPTIMIZATION OF CONDITIONS FOR SAMPLE PREPARATION OF CARBONACEOUS GEOLOGICAL SAMPLES FOR SUBSEQUENT MASS SPECTROMETRY WITH INDUCTIVELY COUPLED PLASMA ANALYSIS

Yu.V. Anoshkina, E.V. Asochakova, O.V. Buharova, V.I. Otmahov, P.A. Tishin

Tomsk State University pr. Lenina 36, Tomsk, 634050, Russia julia-seversk@mail.ru

The results of laboratory research on the optimization of sample preparation of carbonaceous rocks were shown. Researches were carry out using standard samples of black shales SLG-1, SChS-1, metamorphic shales SSL-1 (Vinogradov Institute of Geochemistry SB RAS, Irkutsk), cody shale SCo-1(USA), green river shale SGR-1b (USA). Optimal conditions for the acid decomposition of carbonaceous rocks with subsequent determination of trace elements by mass spectrometry with inductively coupled plasma (ICP-MS) were found. The effect of pre-firing the samples on the degree of extraction of the analyzed elements was studied. The possibility and effectiveness of oxidative addition at the stage of pre-firing was estimated.

Key words: carbonaceous rocks, black shales, ICP-MS, geological reference materials.