АТОМНО-ЭМИССИОННОЕ СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ УГЛЕРОДА В ПОРОШКАХ ФЕРРОСИЛИКОМАРГАНЦА СПОСОБОМ ВДУВАНИЯ В НИЗКОВОЛЬТНЫЙ ИСКРОВОЙ РАЗРЯД

А.Г. Змитревич¹, А.А. Пупышев²

¹ОАО «Челябинский электрометаллургический комбинат» 454081, г. Челябинск, ул. Героев Танкограда, 80 П, строение 80 <u>zmitrevitch@chemk.ru</u> ²ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» 620002, Екатеринбург, ул. Мира, 19

Поступила в редакцию 6 мая 2012 г.

Приведены результаты разработки методики определения содержания углерода (от 1 до 3 % мас.) в порошковых пробах ферросиликомарганца методом атомно-эмиссионного спектрального анализа с использованием способа вдувания порошка в низковольтный искровой разряд. Оценены достигнутые метрологические характеристики методики анализа, определена область применения и предложены возможные пути её дальнейшего совершенствования.

Ключевые слова: атомно-эмиссионный спектральный анализ, способ вдувания порошков, искровой разряд, ферросиликомарганец, определение углерода.

Змитревич Александр Генрихович – кандидат химических наук, начальник лаборатории физических методов анализа ОАО «Челябинский электрометаллургический комбинат».

Область научных интересов – атомно-эмиссионный спектральный анализ порошкообразных материалов.

Автор 26 научных публикаций.

Пупышев Александр Алексеевич – доктор химических наук, профессор кафедры «Физико-химические методы анализа» ФГАОУ ВПО УрФУ.

Область научных интересов – изотопный, элементный и структурный анализ, исследование термохимических процессов в атомизаторах, источниках возбуждения спектров и ионных источниках.

Автор свыше 400 научных публикаций.

ВВЕДЕНИЕ

Ферросиликомарганец применяется в качестве полупродукта при производстве рафинированного ферромарганца, металлического марганца, а также как комплексный раскислитель и легирующая добавка при выплавке сталей разных марок [1, 2]. Данный материал, как и большинство ферросплавов, обладает плохими литейными качествами, что затрудняет получение проб для анализа в виде однородных монолитных отливок [3]. Однако он достаточно легко измельчается и истирается, что позволяет готовить представительные пробы в виде порошков.

Определение Mn, P и Si в ферросиликомарганце (табл. 1) с удовлетворительной точностью можно проводить с помощью метода рентгенофлуоресцентного анализа в варианте измерения прессованных порошковых проб (крупностью менее 80 мкм) на подложке из борной кислоты [4]. С использованием подобной методики можно устанавливать и содержание серы в ферросиликомарганце. Определение же массовой доли углерода с помощью данного метода анализа затруднено по причине принципиального характера: большой длины волны характеристической линии *К*α, углерода (4.459 нм).

Длинноволновое тормозное излучение рентгеновской трубки, наиболее эффективное при фотоионизации атомов углерода и возбуждении его характеристического излучения, полностью поглощается бериллиевым окном рентгеновской трубки [6]. В этих условиях для химического состава ферросиликомарганца основной вклад в возбуждение флуоресценции углерода вносят высокоэнергетичные фотоэлектроны, возникающие при эффективном возбуждении первичным рентгеновским излучением атомов Mn и Fe, и Ожеэлектроны (Si). Малая проникающая способность электронов и сильное поглощение возбужденного

Таблица 1

Технические требования на содержание контролируемых (основных и примесных) компонентов при поставках ферросиликомарганца [5], % мас.

Марка ферросплава	Mn		5	Si	C,	P,	S,	
	более	до и	более	до и	не более	не более	не более	
		вкл.		вкл.				
FeMnSi12	60	75	10	15	3.5	0.35	0.030	
FeMnSi18	60	75	15	20	2.5	0.35	0.030	
FeMnSi18LP	60	75	15	20	2.5	0.15	0.030	
FeMnSi22HP	60	75	20	25	1.6	0.30	0.030	
FeMnSi22MP	60	75	20	25	1.6	0.15	0.030	
FeMnSi22LP	60	75	20	25	1.6	0.10	0.030	
FeMnSi23HP	65	75	20	25	1.0	0.30	0.030	
FeMnSi23MP	65	75	20	25	1.0	0.15	0.030	
FeMnSi23LP	65	75	20	25	1.0	0.10	0.030	
FeMnSi28	65	75	25	30	0.50	0.20	0.030	
FeMnSi28LP	65	75	25	30	0.50	0.10	0.030	
FeMnSi30HP	57	67	28	35	0.10	0.20	0.030	
FeMnSi30LP	57	67	28	35	0.10	0.10	0.030	
FeMnSi30ELP	57	67	28	35	0.10	0.05	0.030	

Примечание: "вкл."- включительно

длинноволнового характеристического рентгеновского излучения углерода материалом пробы уменьшают толщину насыщенного слоя до размеров порядка долей микрометра [7]. Это приводит к уменьшению представительности пробы при формировании аналитического сигнала и сильной его зависимости от матричного и дисперсного состава облучаемого образца [6, 7]. Кроме того, прямое рентгенофлуоресцентное определение углерода возможно только на вакуумных спектрометрах с использованием для диспергирования излучения специальных кристаллов анализаторов (многослойные интерференционные структуры – МИС) и проточных пропорциональных счетчиков мягкого

Таблица 2

Нормируемые показатели повторяемости σ_r , внутрилабораторной прецизионности σ_{Rn} , воспроизводимости σ_R , точности (предел допускаемой погрешности Δ)¹, % мас. для химических методик определения углерода в ферросплавах [12]

Диапазон измерений	σ_{r}	$\sigma_{_{R,n}}$	$\sigma_{_{R}}$	Δ^1
От 0.05 до 0.1 вкл.	0.0037	0.0045	0.0053	0.010
Св. 0.1 до 0.2 вкл.	0.0053	0.0064	0.0076	0.015
Св. 0.2 до 0.5 вкл.	0.0084	0.010	0.012	0.024
Св. 0.5 до 1.0 вкл.	0.013	0.015	0.018	0.035
Св. 1 до 2 вкл.	0.019	0.023	0.027	0.053
Св. 2 до 5 вкл.	0.030	0.036	0.043	0.084

Примечание: «вкл.» – включительно, «Св.» – свыше, ^{1–} соответствует расширенной неопределенности результата измерений *U* с коэффициентом охвата *k* = 2 [13]. рентгеновского диапазона, т.е. самых дорогих рентгеновских спектрометрах.

Из-за принципиальных трудностей выполнения рентгенофлуоресцентного анализа, определение массовой доли углерода в ферросиликомарганце в настоящее время обычно проводят с помощью анализаторов углерода, работающих по принципу высокотемпературного сжигания навески пробы в токе кислорода с последующей регистрацией выделившегося СО, с помощью кулонометрической [8] или инфракрасной абсорбционной [9-11] ячеек. Все эти анализаторы обладают чувствительностью и точностью определений, достаточной для надежного установления содержания углерода во всех марках ферросиликомарганца (табл. 1 и 2), имеют хорошую производительность, но постоянно требуют дорогостоящих расходных материалов (плавни, фарфоровые лодочки или тигли, кислород и др.).

Мы считаем, что более дешевой альтернативой в этом случае может послужить атомно-эмиссионный спектральный анализ (АЭСА) в варианте вдувания порошков в источник возбуждения спектров (ИВС), который ранее успешно был опробован для определения более высоких содержаний углерода (4-7 % мас.) в материале со схожим матричным составом – ферромарганце [14]. Для ферросиликомарганца в [14] при регистрации интенсивности аналитической линии С I 247.856 нм и сигнала сравнения, в качестве которого использовали интенсивность излучения спектрального диапазона 243.36-243.86 нм, не удалось получить приемлемой повторяемости результатов определений. Это было обусловлено, по нашему мнению, сравнительно высоким фоновым сигналом углерода из-за присутствия углекислого газа в атмосфере ИВС, не слишком удачным подбором аналитической линии и сигнала внутреннего стандарта. Например, в работе [15] линию С I 247.856 нм использовали при атомно-эмиссионном анализе минерального сырья с дуговым возбуждением спектра в отсутствии значительного содержания железа. При этом нижняя граница диапазона определения углерода составила 0.3 % мас. При больших содержаниях железа в пробах авторы [15] рекомендовали использовать свободную от спектральных наложений железа [16] спектральную линию С I 193.04 нм. Поэтому мы допускали, что при использовании данной линии и более подходящего сигнала внутреннего стандарта можно добиться более приемлемых, чем в случае [14], результатов.

Используемая на ОАО «ЧЭМК» технология позволяет производить выплавку ферросиликомарганец разных марок с содержанием углерода в диапазоне от 1 до 3 % мас., что и определило верхнюю и нижнюю границы измерений разрабатываемой методики.

Целью данного исследования являлась разработка методики атомно-эмиссионного спектрального определения углерода в диапазоне от 1 до 3 % мас. в соответствующих марках ферросиликомарганца (табл. 1), оценка её метрологических характеристик и области применения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Углерод относится к трудновозбудимым элементам и находится в ферросиликомарганце в виде тугоплавких соединений [2]. Поэтому в качестве источника возбуждения спектров использовали высокотемпературный ИВС – низковольтную искру со следующими параметрами колебательного контура: емкость – 60 мкФ; индуктивность – 500 мкГн, подобранными ранее для спектрального анализа ферромарганца [14]. В данный ИВС с медными электродами (межэлектродное расстояние 6 мм) потоком воздуха (6 м/с) вводили порошки ферросиликомарганца крупностью менее 80 мкм. Следует также отметить, что используемые параметры колебательного контура ограничены техническими возможностями генератора ИВС-29 [17] и не обязательно являются оптимальными для данного способа анализа.

При построении градуировочной зависимости использовали производственные пробы различных марок ферросиликомарганца (табл. 1) с максимально возможным диапазоном содержаний углерода, установленным методом сжигания образца в токе кислорода (далее будем называть методикой химического анализа).

Регистрацию эмиссионных спектров проводили с помощью спектрометра МФС-8, оснащенного линейками из сборок приборов с зарядовой связью (ПЗС) и автоматической системой управления вдувания порошков (АСУВ), при поперечном способе отбора излучения [14], бесконденсорном способе освещения его входной щели шириной 12 мкм и времени экспозиции 10 с. В качестве управляющего сигнала АСУВ использовали интегральное излучение искры в видимой области спектра, выделяемого с помощью синего светофильтра низкого спектрального разрешения и измеряемого с помощью фотодиода. Оптимальную зону излучения искрового разряда выбирали по максимуму интенсивности аналитической спектральной линии углерода С I 193.04 нм. Для всех спектральных линий, в том числе и для линии углерода I_c , с помощью пикселей ПЗС регистрировали интегральную интенсивность

$$I_{\mathbf{HHT}} = \int_{\lambda_1}^{\lambda_2} J(\lambda) d\lambda, \qquad (1)$$

где λ_1 и λ_2 – нижний и верхний пределы интегрирования по длине волны соответственно; $I(\lambda)$ – зарегистрированная спектрометром мощность излучения, соответствующая длине волны λ [18].

Ферросиликомарганец относится к многокомпонентным сплавам (табл. 1), у которых из-за больших вариаций химического состава невозможно выбрать один элемент в качестве внутреннего стандарта. Поэтому в качестве сигнала внутреннего стандарта *I*_{вн.ст} использовали линейную комбинацию интенсивностей спектральных линий, содержащихся в данном материале основных компонентов и примесей, с оптимизируемыми весовыми коэффициентами [19]:

$$I_{BH.CT} = \sum_{i=1}^{\Pi_{GB,HC}} a_{ij} I_i \quad ,$$
 (2)

где I_i – интенсивность *i*-той спектральной линии основного или примесного компонента сплава; a_{ij} – оптимизируемые весовые коэффициенты; $n_{\text{базнс}}$ – общее количество используемых спектральных линий; *j* – обозначение принадлежности к определяемому элементу (табл. 3). Критерием

Таблица 3

Использованный базисный набор спектральных линий для внутреннего стандарта при построении градуировочной зависимости (*I*_C/*I*_{вн.ст}) = *A*·*C*_C + *B*

Длина вол- ны спек-	Предел грирова	іы инте- ания, нм	Весовой коэффици-
тральной	λ	λ ₂	ент
линии, нм			
Si I 243.52	243.47	243.57	0.804
Mn I 199.54	199.50	199.58	-0.229
Mn II 193.08	193.05	193.11	2.061
AI I 308.22	308.19	308.25	-0.073
Ca I 315.07	315.04	315.10	-1.517
C I 193.04	193.01	193.06	-0.575
Fe I 245.75	245.71	245.79	0.274

оптимизации служил максимум коэффициента корреляции R линейного уравнения градуировки $(I_{\rm C}/I_{\rm BH,C}) = A \cdot C_{\rm C} + B.$

Следует отметить, что в уравнение градуировки для сигнала внутреннего стандарта были внесены интенсивности спектральных линий алюминия и кальция, которые не являются нормируемыми компонентами для ферросиликомарганца (табл. 1), но наличие этих примесей, влияющих на процессы возбуждения спектров, было установлено в ходе экспериментов. По всей видимости, корреляционная связь между аналитическими сигналами этих компонентов и углерода может быть обусловлена особенностями технологии выплавки ферросиликомарганца. Например, определенное соотношение оксидов кальция, алюминия и кремния в шихте способствует повышению температуры процесса и более полному восстановлению марганца и кремния углеродом, что в свою очередь может повлиять на соотношение образуемых углеродсодержащих фаз [2].

Полученная в результате регрессионная зависимость $(I_C/I_{BH,CT}) = A \cdot C_C + B$ (рис. 1) имеет линейный вид (Y = $A \cdot X + B$) и достаточно высокий коэффициент корреляции (R = 0.978). Дальнейшее расширение базисного набора спектральных линий (по сравнению с приведенными в табл. 3) с использованием спектральных линий, как основных компонентов, так и примесей, не привело к заметному улучшению значения R.

Так как не просматривалось заметных аддитивной и мультипликативной систематических погрешностей определений (рис. 1), то было выдвинуто предположение (по аналогии с [20, 21]), что на отклонение точек от градуировочных графиков могут влиять два основных фактора:

 случайные погрешности химической и разрабатываемой методик атомно-эмиссионного спектрального анализа; - различие фазового и гранулометрического состава проб (неадекватность), используемых в качестве образцов сравнения.

Поэтому правильность методики анализа, характеризующейся стандартным отклонением точек от градуировочной зависимости о, по закону сложения дисперсий должна выражаться как

$$\sigma^2 = \sigma_{\text{head}}^2 + \sigma_{\text{Ra},c}^2 + \sigma_{\text{Ra}}^2 , \qquad (3)$$

где $\sigma_{R,r,c}, \sigma_{R,r}$ и σ_{Heag} – стандартные отклонения внутрилабораторных прецизионностей спектрального и химического анализа, и неадекватности проб соответственно.

Оценку внутрилабораторной прецизионности проводили в соответствии с [22] и на основании результатов определений содержания углерода в производственных пробах в приведенных выше операционных условиях с помощью полученной градуировочной зависимости (рис. 1). Для каждой производственной пробы было проведено по 20 серий определений (из трех параллельных измерений) при варьировании факторов времени и оператора. Результаты измерений представлены на рис. 2. Видно, что экспериментально полученные зависимости показателей повторяемости и внутрилабораторной прецизионности удовлетворительно аппроксимируются линейными регрессиями с достаточно высокими коэффициентами корреляции. Оценку правильности разрабатываемой методики анализа и определение структуры ее погрешности проводили на основании сопоставления с результатами измерений массовой доли углерода в производственных пробах с помощью применяемой химической методики (табл. 4), использованных для построения градуировочной зависимости (рис. 1).

По уравнениям (4)-(6) рассчитывали разность *d*, между парами результатов химического *C*_{хим} и

Рис. 1. Градуировочная зависимость для определения массовой доли углерода в ферросиликомарганце атомно-эмиссионным спектральным методом (*R* – коэффициент корреляции)

Рис. 2 Зависимость показателей (**СКО**) внутрилабораторной прецизионности (1) и повторяемости (2) от массовой доли углерода (*R* – коэффициенты корреляции регрессионных зависимостей)

спектрального С_{спек}анализа, среднюю разность *d*, стандартные отклонения о:

$$d_{i} = C_{\mathbf{XHM}}^{i} - \mathbf{C}_{\mathbf{CHEK}}^{i} , \qquad (4)$$

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i , \qquad (5)$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2},$$
 (6)

где *і* – номер пробы по порядку; *n* – общее количество проб. Величины *d* и о получились, соответственно равными 0.000 и 0.098 % мас.

Используя регрессионные уравнения (1) и (2) (рис. 2) и разбивку по диапазонам принятую в [12], в соответствии с [22] рассчитали показатели повторяемости σ_{r} , внутрилабораторной прецизионности $\sigma_{Rn,c}$ и неадекватности σ_{Head} (по уравнению (7)):

$$\sigma_{\text{неад}} = \sqrt{\sigma^2 - \sigma_{R\pi,c}^2 - \sigma_{R\pi}^2}$$
(7)

Если подкоренное выражение уравнения (7) получалось отрицательным, то σ_{неад} приравнивалось к нулю. Показатель точности методики **Δ** определялся как:

$$\Delta = 1,96\sqrt{\sigma_{R,n,c}^2 + \sigma_{Hea,I}^2}$$
(8)

Таблица 4

Результаты определения массовой доли углерода в производственных пробах ферросиликомарганца разрабатываемой спектральной $C_{_{\rm спек}}$ и химической методиками $C_{_{{\rm XИМ}}}$, а также средних \overline{d} и стандартных отклонение разностей о, % мас.

Номер пробы п/п	С _{хим}	Сспек	Номер пробы п/п	С _{хим}	Сспек	Номер пробы п/п	С _{хим}	Сспек
1	1.10	1.11	11	1.74	1.67	21	2.13	2.08
2	1.22	1.21	12	1.63	1.73	22	2.09	2.10
3	1.11	1.29	13	1.77	1.79	23	2.28	2.30
4	1.34	1.33	14	1.99	1.77	24	2.18	2.32
5	1.31	1.36	15	1.64	1.87	25	2.45	2.40
6	1.40	1.38	16	2.17	2.02	26	2.40	2.47
7	1.54	1.46	17	1.91	2.06	27	2.56	2.53
8	1.67	1.49	18	2.08	2.06	28	2.66	2.65
9	1.51	1.52	19	2.06	2.07	29	2.94	2.93
10	1.54	1.57	20	2.15	2.07	30	2.98	2.95

Таблица 5

Показатели внутрилабораторной прецизионности $\sigma_{_{\!\!R\!\!n,c}},$ повторяемости $\sigma_{_{\!\!r\!}},$ степени неадекватности производственных проб $\sigma_{_{\!\!H\!eag}},$ точности разрабатываемой спектральной методики (предел допускаемой погрешности $\Delta)^1,~\%$ мас.

Диапазон	σ _r	σ _{Rл,c}	$\sigma_{_{\rm Head}}$	Δ
От 1 до 2 вкл.	0.065	0.076	0.057	0.19
Св. 2 до 3 вкл	0.091	0.11	0	0.22

Примечание: «Св.» – свыше; «вкл.» – включительно; 1 – соответствует расширенной неопределенности результата измерений U с коэффициентом охвата *k* = 2 [13].

Результаты расчётов представлены в табл. 5. Для проверки устойчивости полученных показателей провели дополнительную проверку правильности методики с использованием контрольной выборки, состоящей из 53 производственных проб ферросиликомарганца, случайно отобранных по разным печам, и проанализированных химическим и спектральным методами в течении одного месяца. По результатам анализов данные разбили на два диапазона в соответствии с табл. 5. По уравнениям (4)-(6) для каждого диапазона рассчитали среднюю разность \overline{d} и стандартное отклонение разностей о результатов химического и спектрального анализа. Кроме того, по уравнению (9) и на основании данных (табл.2 и 5) для каждого диапазона рассчитали показатели правильности σ_{x-c} методики

$$\sigma_{\rm X-c} = \sqrt{\sigma_{\rm R\pi,c}^2 + \sigma_{\rm R\pi}^2 + \sigma_{\rm Heag}^2} \tag{9}$$

Исходные данные и результаты расчёта представлены в табл.6.

Из табл. 6 видно, что d по сравнению с о составляет статистически незначимую величину в обоих диапазонах измерений. Кроме того, сопоставление σ с σ_{у-с} по критерию Фишера показывает, что дисперсии разностей между химическим и спектральным методами измерений в обучающей (рис. 1) и контрольной (табл. 6) выборках однородны в обоих диапазонах измерений. Это говорит об отсутствии значимой аддитивной систематической погрешности и одинаковых показателях правильности в обучающей и контрольной выборках. Следовательно, отобранные для обучающей выборки пробы в полной мере отображают вариации всех корреляционных факторов, и проведенные ранее оценки метрологических показателей методики (повторяемости, внутрилабораторной прецизионности и неадекватности) достаточно устойчивы и корректны.

Таблица 6

Результаты определения массовой доли углерода в контрольной выборке производственных проб ферросиликомарганца разрабатываемой спектральной C_{cnek} и химической методиками C_{xum} , а также средних \overline{d} , стандартных отклонение разностей σ и показателей правильности спектральной методики σ_{xc} по диапазонам концентраций углерода

Диапазон	Nº	С	Сспек	Nº	С	Сспек	Nº	С	Сспек	d	σ	σ _{x-c}
концентраций	п/п			п/п			п/п					
углерода, %												
мас.												
	1	1.75	1.64	14	1.52	1.42	27	1.59	1.5			
	2	1.34	1.33	15	1.60	1.41	28	1.48	1.68			
	3	1.39	1.33	16	1.84	1.56	29	1.59	1.56			
	4	1.12	1.02	17	1.54	1.43	30	1.75	1.56			
	5	1.82	1.80	18	1.76	1.78	31	1.79	1.59			
	6	1.79	1.64	19	1.73	1.76	32	1.56	1.56			
От 1 до 2	7	1.68	1.67	20	1.61	1.56	33	1.73	1.58	-0.042	0.099	0.10
включительно	8	1.87	1.70	21	1.36	1.41	34	1.74	1.58			
	9	1.92	1.93	22	1.50	1.58	35	1.14	1.2			
	10	1.85	1.84	23	1.58	1.47	36	1.20	1.23			
	11	1.62	1.55	24	1.58	1.56	37	1.15	1.17			
	12	2.00	1.98	25	1.65	1.73	38	1.01	1.02			
	13	1.89	1.98	26	1.48	1.50	39	1.22	1.28			
Свыше 2 до 3	1	2.08	1.98	6	2.13	2.05	11	2.11	2.08			
	2	2.21	2.28	7	2.12	2.08	12	2.17	2.18			
	3	2.10	2.17	8	2.03	2.03	13	2.14	2.07	-0.046	0.097	0.12
включительно	4	2.05	1.88	9	2.06	2.11	14	2.25	1.97			
	5	2.13	2.04	10	2.05	2.06	-	-	-			

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Разработана атомно-эмиссионная методика анализа углерода в диапазоне от 1 до 3 % мас. в соответствующих этому содержанию марках ферросиликомарганца, поэтому поставленную цель работы можно считать достигнутой. Данная методика не уступает существующей химической по экспрессности и не требует дорогостоящих расходных материалов (основной вклад в себестоимость вносит потреблённая электроэнергия).

Соотношение показателей повторяемости σ_r и внутрилабораторной прецизионности σ_{Rn.c} в разработанной методике (табл. 5) составляет 0.83-0.86, что несколько выше обычно достигаемого соотношения этих величин в методиках количественного химического анализа (0.67-0.82) [12, 23]. Это означает, что некоторое усовершенствование методики возможно за счёт выявления и устранения факторов, влияющих на повторяемость определений (например, более тонкое измельчение порошков, изменение параметров разрядного контура, увеличение частоты следования искровых импульсов, предварительное обыскривание электродов и.т.д.).

Как и в случаях [20, 21] в диапазоне измерений углерода «от 1 до 2 вкл. % мас.» наблюдается статистически значимая погрешность, связанная с фактором неадекватности образцов (табл. 5). При более высоком содержании углерода данный фактор становится статистически незначимым.

Из-за высокой (по сравнению с химическими методами) расширенной неопределенности измерения *U* разработанная методика анализа в нынешнем её варианте может быть использована при контроле технологического процесса выплавки ферросиликомарганца.

Так как в некоторых марках товарного ферросиликомарганца содержание углерода может быть менее 1 % мас. (табл. 1), а воздухе имеется некоторое количество CO₂, мешающего определению низких концентраций углерода, изучали перспективу расширения нижней границы диапазона измерения разработанной методики с помощью оценки её предела обнаружения. Для этой цели с помощью описанной выше аппаратуры и в приведённых там же условиях проводили сканирование линии С I 193.04 без вдувания и при вдувании порошков ферросиликомарганца с разными содержаниями углерода в медную воздушную искру (рис. 3).

Используя уравнение (1) и табл. 2, рассчитывали абсолютные интенсивности аналитических сигналов, и, с помощью полученных данных, получали линейную регрессионную зависимость вида $Y = A \cdot X + B$ в координатах "Абсолютная интенсивность - массовая доля углерода". Затем, без введения порошка пробы, провели 24 серии измерений интенсивности спектральной линии С I 193.04 нм, рассчитали стандартное отклонение s_0 этих измерений. Оценку предела обнаружения x_p провели в соответствии с [24]:

$$x_{\rm D} \approx 2(t_{p,v} s_0)/b, \qquad (10)$$

где $t_{p,v}$ – табличное значение *t*-распределения (*p*, *v* – доверительная вероятность, число степеней свободы, соответственно), *b* – угловой коэффициент линейной регрессии. Для доверительной вероятности 0.99 предел обнаружения $x_{\rm D}$ составил 0.33 % мас., что практически достигает приведенного в работе [15] подобного показателя при анализе

Длина волны, нм асьой пичии С I 193 04 им без вредения (1) и при вредении п

Рис. 3. Профили спектральной линии С I 193.04 нм без введения (1) и при введении порошков ферросиликомарганца с разными содержаниями углерода: 2 – 1.10; 3 – 2.15; 4 – 2.94 % мас. в воздушную низковольтную искру с медными электродами минерального сырья. Это означает также, что для разработанной спектральной методики существует возможность некоторого расширения её нижней границы измерения. По всей видимости, предел обнаружения на уровне 0.3 % мас. является наилучшим, для воздушных газовых разрядов. Более низкие пределы обнаружения можно достичь при использовании других плазмообразующих газов (например, аргона или азота), т.е. при работе ИВС в изолированной атмосфере.

выводы

1. Разработана более дешевая (по сравнению с существующими химическими) методика определения углерода в ферросиликомарганце атомноэмиссионным спектральным методом при способе вдувания порошковых проб в низковольтный искровой разряд.

2. Оценены показатели повторяемости, внутрилабораторной прецизионности и правильности методики, изучена структура ее общей погрешности.

3. Показано существенное влияние неадекватности фазового и гранулометрического состава проб ферросиликомарганца на показатели точности методики.

4. Определена область применения данной методики, предложены возможные пути совершенствования и расширение её нижнего диапазона измерения.

5. Оценён предел обнаружения спектральных методов определения углерода при использовании в качестве ИВС воздушных газовых разрядов.

ЛИТЕРАТУРА

1. Технология марганцевых ферросплавов. Ч. 1. Высокоуглеродистый ферромарганец / В.И. Жучков и [др.]. Екатеринбург: УрО РАН, 2008. 415 с.

2. Технология марганцевых ферросплавов. Ч. 2. Низкоуглеродистые сплавы В.И. Жучков и [др.]. Екатеринбург: УрО РАН, 2008. 443 с.

3. Ферросплавы: справочник / В.Г. Мизин и [др.]. М.: Металлургия, 1992. 141 с.

4. НДП №02.04.143-2007 Методика количественного химического анализа. Ферросиликомарганец. Определение массовых долей кремния, марганца, фосфора. Рентгеноспектральный флуоресцентный метод. Челябинск. Дата внедрения 20.09.2007.

5. ГОСТ 4756-91. Ферросиликомарганец. Технические требования и условия поставки. М.: Изд-во стандартов, 1992. 8 с.

6. Павлинский Г.В. Основы физики рентгеновского излучения. М.: Физматлит, 2007. 240 с.

7. Калинин Б.Д., Руднев А.В. Эффекты дифракции в рентгенофлуоресцентном анализе и использование их в аналитических целях // Аналитика и контроль. 2011. Т. 15, № 3. С. 332-338.

8. [Электронный ресурс]: <u>http://zipgomel.by</u> (дата обращения 01.05.2012).

9. [Электронный ресурс]: <u>http://leco.ru</u> (дата обращения 01.05.2012).

10. [Электронный ресурс]: <u>http://www.eksan.ru</u> (дата обращения 01.05.2012).

11. [Электронный ресурс]: <u>http://www.skyrays.ru</u> (дата обращения 01.05.2012).

12. М 20-2010. Рекомендация. Нормы точности количественного химического анализа материалов чёрной металлургии. Екатеринбург: ЗАО «Институт стандартных образцов», 2010. 37 с.

13. Рекомендации по стандартизации Р 50.1.060-2006. Статистические методы. Руководство по использованию оценок повторяемости, воспроизводимости при оценке неопределенности измерений. М.: Стандартинформ, 2007. [Электронный ресурс]: <u>http://www.infosait.ru</u> (дата обращения 03.05.2012).

14. Змитревич А.Г., Пупышев А.А. Атомно-эмиссионный спектральный анализ ферросплавов. Екатеринбург: УГТУ-УПИ, 2009. 270 с.

15. Калинин С.К., Файн Э.Е. Спектральный анализ минерального сырья. Алма-Ата: Изд. АН КазССР, 1962. 240 с.

16. Таблицы спектральных линий / А.Н. Зайдель и [др.]. М.: Наука, 1977. 798 с.

17. Источник возбуждения спектров ИВС-29. Паспорт. 56 с.

18. Зайдель А.Н., Островская Г.В., Островский Ю.И. Техника и практика спектроскопии. М.: Наука, 1976, 392 с.

19. Змитревич А.Г., Пупышев А.А. Оптимизация градуировочных зависимостей при атомно-эмиссионном спектральном анализе многокомпонентных ферросплавов способом вдувания в дуговой разряд // Проблемы спектроскопии и спектрометрии. Межвуз. сб. научн. трудов. Вып. 16. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2004. С. 33-44.

20. Змитревич А.Г., Пупышев А.А. Разработка методики атомно-эмиссионного спектрального определения кремния в порошках ферросилиция способом вдувания //Аналитика и контроль. 2011. Т. 15, № 14. С. 401-408.

21. Змитревич А.Г., Пупышев А.А. Атомно-эмиссионное спектральное определение оксидов натрия и калия в порошках микрокремнезёма способом вдувания // Аналитика и контроль. 2012. Т. 16, № 1. С. 23-29.

22. РМГ 61-2003. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки. М.: ИПК издательство стандартов, 2004. 42 с. (Государственная система обеспечения единства измерений).

23. Дворкин В.И. Метрология и обеспечение качества количественного химического анализа. М.: Химия, 2001. 263 с.

24. Представление результатов химического анализа (рекомендации IUPAC 1994 г.) // Ж. аналит. химии. 1998, Т. 53, № 9. С. 999-1008.

ATOMIC EMISSION SPECTRAL DETERMINATION OF CARBON IN FERRO SILICO MANGANESE POWDERS USING THE INJECTION IN LOW-VOLTAGE SPARK DISCHARGE

A.G. Zmitrevich¹, A.A. Pupyshev²

¹JSC "Chelyabinsk Electrometallurgical Works" RF, 454081, Chelyabinsk, Geroev Tankograda 80, building 80 <u>zmitrevitch@chemk.ru</u> ²Ural Federal University RF, 620002, Ekaterinburg, ul. Mira, 19 pupyshev@dpt.ustu.ru

The results of developing a methodology for determining the carbon content (1-3 %) in ferro silico manganese powdered samples using the atomic emission spectral analysis with the injection of powders into the low-voltage spark discharge are presented. The achieved metrological characteristics of the described methodology are evaluated, its application scope and possible ways of its further improvement are discussed.

Key words: atomic emission spectral analysis, injection method, sparks discharge, ferro silico manganese, carbon determination.