К ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ СОСТАВА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПО ИНТЕНСИВНОСТИ РАССЕЯННОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Б.Д. Калинин¹, Р.И. Плотников¹, А.А. Речинский²

¹ООО «Прецизионные Технологии», Санкт-Петербург ²ООО «Вебер Комеханикс СПб», Санкт-Петербург <u>kalinin_boris@mail.ru</u>

Поступила в редакцию 27 декабря 2010 г.

Показана возможность количественного определения содержаний водорода, углерода и кислорода в органических соединениях с использованием когерентного и некогерентного рассеянного рентгеновского излучения характеристических линий первичного спектра. Для моделей органических соединений были рассчитаны интенсивности когерентно и некогерентно рассеянных линий СиКа и РdКа, проведена градуировка и оценены погрешности определения содержаний указанных элементов. Экспериментальные исследования были проведены на портативном рентгеновском спектрометре «СПЕКТРОСКАН МАКС-GV». Получены удовлетворительные остаточные погрешности градуировочных характеристик.

Ключевые слова: рентгеновский спектрометр, рентгеноспектральный анализ, легкие элементы, водород, углерод, кислород, органические соединения, массовые дифференциальные коэффициенты рассеяния, когерентное и некогерентное рассеяние рентгеновского излучения, градуировка.

Калинин Борис Дмитриевич – доктор технических наук.

Область научных интересов: рентгеновское аналитическое приборостроение, физические методы анализа в аналитической химии, программное и методическое обеспечение анализа.

Опубликовано 170 печатных работ, в том числе монография, 8 изобретений и патентов.

Плотников Роберт Исаакович – кандидат технических наук.

Область научных интересов: рентгеновское аналитическое приборостроение, физические методы анализа в аналитической химии, программное и методическое обеспечение анализа.

Опубликовано около 400 печатных работ, в том числе 2 монографии, 28 изобретений и патентов.

Речинский Андрей Андреевич – ведущий инженер ООО "Вебер Комеханикс СПб". Область научных интересов: рентгеновское аналитическое приборостроение, физические методы анализа в аналитической химии, программное и методическое обеспечение анализа.

Опубликовано 17 печатных работ, в том числе 6 изобретений и патентов.

Среди многих неразрушающих методов аналитической химии рентгенофлуоресцентный анализ поверхности, растворов, тонких слоев и твердых тел занимает центральное положение. Метод позволяет определять качественный и количественный состав анализируемых объектов, измерять толщины фольг и покрытий, проводить идентификацию анализируемых объектов, исследовать тип химической связи и находить соотношения элементов разной валентности. Существенным ограничением рентгенофлуоресцентного анализа является низкая чувствительность метода при определении легких элементов (от лития до неона) и невозможность определения водорода. Причиной этого для легких элементов является низкий выход флуоресценции, незначительная глубина слоя, в котором формируется рентгеновская флуоресценция, значительное поглощение флуоресценции воздухом и элементами измерительной установки, а для водорода – отсутствие спектральных линий в рентгеновской области. Поэтому разработанные способы рентгенофлуоресцентного анализа имеют ограниченное применение для определения этих элементов. Классический метод Либиха определения содержания водорода, углерода и кислорода в органических соединениях [1], основанный на сжигании навески вещества в сухом кислороде или воздухе, характеризуется длительностью процесса и низкой точностью определения кислорода, определяемого по разности от 100 %.

Возможность неразрушающих способов определения легких элементов в органических соединениях методами рентгеновской спектроскопии открывается при использовании других физических процессов, возникающих при взаимодействии рентгеновского излучения с веществом, а именно: когерентного и некогерентного рассеяния рентгеновского излучения объектами анализа. Существенно отличающиеся зависимости интенсивности когерентно и некогерентно рассеянного излучения от атомного номера, особенно выраженные для легких элементов, позволяют выполнять анализ двух- и трехкомпонентных материалов на основе этих элементов, включая определение водорода, на рентгеновских спектрометрах без использования вакуума. В работе [2] была впервые показана возможность определения соотношения С/Н в нефтепродуктах по отношению интенсивностей когерентно и некогерентно рассеянной характеристической La линии вольфрамового анода рентгеновской трубки. Влияние небольших количеств N и S, часто присутствующих в нефтепродуктах, учитывалось при определении этих элементов другими методами. Какие-либо работы по рентгеноспектральному анализу трехкомпонентных органических соединений, содержащих С, Н и О, с использованием рассеянного рентгеновского излучения, насколько нам известно, отсутствуют.

В настоящей работе показана возможность прямого количественного рентгеноспектрального определения углерода, водорода и кислорода в органических соединениях, состоящих из этих элементов.

На рис. 1 представлена схема использованного для этой цели рентгеновского спектрометра. Первичное излучение рентгеновской трубки падает на исследуемый образец под углом φ . Рассеянное на образце излучение отбирается под углом ψ и попадает на кристалл-анализатор ($\theta = \varphi + \psi$ - угол рассеяния), на котором происходит выделение когерентно и некогерентно рассеянных характеристических линий первичного излучения, интенсивность которых регистрируется детектором. Фильтр, расположенный в непосредственной близости к окну рентгеновской трубки, позволяет снизить фон тормозного излучения и ввести в пучок первичного излучения дополнительные характеристические линии.

Интенсивности когерентно и некогерентно рассеянных характеристических линий, определяемые элементным составом анализируемого материала, пропорциональны отношению соответствующих массовых дифференциальных коэффициентов рассеяния к массовым коэффициентам ослабления:

$$I^{cg} = I_0^{cg} \frac{\sum_i C_i \frac{d\sigma_i^{cg}}{d\Omega}}{\mu_m^{cg} \left(\frac{1}{\sin\varphi} + \frac{1}{\sin\psi}\right)}$$
(1a)

И

$$I^{nc} = I_0^{nc} \frac{\sum_{i} C_i \frac{d\sigma_i^{nc}}{d\Omega}}{\frac{\mu_m^{cg}}{\sin\varphi} + \frac{\mu_m^{nc}}{\sin\psi}} , \qquad (16)$$

где C_i - содержания составляющих пробу элементов; I^{cg} и I^{nc} - интенсивности когерентно и некогерентно рассеянного излучения; $\frac{d\sigma_i^{cg}}{d\Omega}$ и $\frac{d\sigma_i^{nc}}{d\Omega}$ - массовые дифференциальные коэффициенты

Рис. 1. Схема рентгеновского спектрометра, позволяющая реализовать определение легких элементов

рассеяния когерентного и некогерентного излучения соответственно элементом і в элементарный телесный угол $d\Omega$ под углом рассеяния θ ; μ_m^{cg} и μ_m^{nc} - массовые коэффициенты ослабления пробой когерентного (первичного) и некогерентного рассеянного излучения соответственно; I_0^{cg} и I_0^{nc} - постоянные коэффициенты, не зависящие от состава пробы ($I_0^{cg} = I_0^{nc} = \frac{I_0 \times S}{R^2}$; I_0 – интенсивность первичного излучения, S – площадь образца, R – расстояние до детектора).

Соотношение между длинами волн когерентного и некогерентного излучения определяется формулой

$$\lambda_{nc} = \lambda_{cg} + \frac{h}{m_0 c} (1 - \cos \theta) = \lambda_{cg} + \lambda_c (1 - \cos \theta),$$

где h - постоянная Планка; m_o - масса покоя электрона; c - скорость света в вакууме; $\frac{h}{m_0 c} = \lambda_c = 0,024$ Å – комптоновская длина волны электрона покоя; θ - угол рассеяния.

Для теоретической оценки предлагаемого способа были составлены массивы моделей двух и трехкомпонентных градуировочных образцов (23 образца). Диапазоны содержаний элементов в градуировочных образцах приведены в табл. 1.

Таблица 1 Химические составы модельных образцов органических соединений для проведения градуировки

Диапазон	Элемент, мас. %				
содержаний элементов	С	Н	0		
Минималь- ное - С _{min}	40	5	0		
Максималь- ное - С _{мах}	90	15	55		

В спектре рентгеновской трубки БХВ-17 (Pd), используемой в спектрометре «СПЕКТРО-СКАН МАКС-GV» (производство НПО «Спектрон», Санкт-Петербург), на котором выполнялись экспериментальные исследования, кроме основных характеристических линий материала анода присутствуют паразитные линии меди. В табл. 2 приведены значения массовых дифференциальных коэффициентов рассеяния и ослабления для когерентно и некогерентно рассеянных линий РdКα (0.587 Å и 0.611 Å) и СuКα (1.542 Å и 1.566 Å) для H, С и О, рассчитанные по выражениям, опубликованным в работах [3, 4].

Для 23 градуировочных образцов, которые были взяты без привязки к каким-либо конкретным химическим соединениям, с диапазоном содержаний элементов табл. 1, были рассчитаны по данным табл. 2 и формулам (1а) и (1б) интенсивности когерентно и некогерентно рассеянных Ка линий меди и палладия. Для расчетной градуировки использовали частные формы уравнения общего вида

$$C_i = a_0 + \sum_j a_j I_j + \sum_j b_j R_j$$
, (2)

где I_j - интенсивности когерентно и некогерентно рассеянных линий меди и палладия, R_j - их произвольные отношения.

Полученные расчетные градуировочные уравнения были применены для оценки правильности анализа на 11 моделях органических соединений – проверочных образцах (гидрохинон, глюкоза, сахар, крахмал, фенол, ализарин, бутиловый спирт, стеариновая, лимонная, щавелевая кислоты, бензофенон). Для этих образцов (трехкомпонентных органических систем) были рассчитаны по данным табл. 2 и по формулам (1а) и (1б) интенсивности когерентно и некогерентно рассеянных линий РdКа и СuКа..

Таблица 2

Таблица 3

Дифференциальные массовые коэффициенты рассеяния *d*σ^{cg}/*d*Ω и *d*σ^{nc}/*d*Ω (см²/г×ср*) и ослабления μ^{cg}_c и μ^{nc}_m (см²/г) для легких элементов при угле рассеяния 95°

Коэффициенты		CuKα		PdKα			
	Н	С	0	Н	С	0	
$d\sigma^{ m cg}\!/d\Omega$	0.000155	0.00600	0.00834	1.601·10 ⁻⁷	0.00135	0.00197	
$d\sigma^{ m nc}/d\Omega$	0.0230	0.00855	0.00829	0.0220	0.01033	0.01000	
μ_m^{cg}	0.3915	4.547	11.46	0.368	0.384	0.714	
μ_m^{nc}	0.392	4.780	12.05	0.367	0.414	0.793	

Примечание: * - стерадиан.

Расчетные стандартные отклонения для градуировочных характеристик (S₀), минимальные и максимальные концентрации по аналитам для проверочных образцов

Аналит	S ₀ , мас. %	С _{міл} , мас.%	С _{мах} , мас. %
Н	0.04	2.2	13.5
С	0.25	26.7	86
0	0.23	8.8	71.1

Таблица 4

Результаты расчета содержаний элементов по частным видам уравнения (2) для углерода, водорода и кислорода по расчетным интенсивностям

Соединение	Содержания элементов, мас. %								
	Углерод			Водород			Кислород		
	Стех.	Расчет	$\Delta C_{_{abc}}$	Стех.	Расчет	$\Delta C_{_{abc}}$	Стех.	Расчет	$\Delta C_{_{abc}}$
Гидрохинон $C_6H_4(OH)_2$	65.45	64.91	-0.54	5.45	5.54	0.09	29.09	29.56	0.47
Глюкоза С ₆ Н ₁₂ О ₆	40	40.5	0.5	6.67	6.62	-0.05	53.33	52.86	-0.47
Caxap C ₁₂ H ₂₂ O ₁₁	42.11	42.42	0.31	6.43	6.41	-0.02	51.46	51.13	-0.33
Крахмал (C ₆ H ₁₀ O ₅) _n	44.44	44.54	0.1	6.17	6.18	0.01	49.38	49.37	-0.01
Фенол С ₆ Н ₅ ОН	76.6	76.87	0.27	6.38	6.35	-0.03	17.02	17.06	0.04
Ализарин С ₁₄ Н ₈ О ₄	70	69.73	-0.27	3.33	3.33	0	26.67	26.65	-0.02
Бутиловый спирт С₄Н ₉ ОН	64.87	64.78	-0.09	13.51	13.53	0.02	21.62	21.69	0.07
Стеарино- вая кислота С ₁₈ Н ₃₆ О ₂	76.05	76.52	0.47	12.68	12.62	-0.06	11.27	10.87	-0.4
Лимонная кислота С ₆ Н ₈ О ₇	37.5	37.6	0.1	4.17	4.16	-0.01	58.33	58.2	-0.13
Щавелевая кислота С ₂ Н ₂ О ₄	26.67	26.93	0.26	2.22	2.18	-0.04	71.11	71.14	0.03
Бензофе- нон С ₁₃ Н ₁₀ О	85.72	86.1	0.38	5.49	5.44	-0.05	8.79	8.54	-0.25

Примечание: Стех. – содержание элементов по стехиометрической формуле соединения, $\Delta C_{_{abc}}$ – расхождения между стехиометрическими и найденными содержаниями.

Полученные расчетные стандартные отклонения для градуировочных характеристик и минимальные и максимальные концентрации по аналитам для проверочных образцов (не входящих в число градуировочных) приведены в табл. 3.

Стехиометрические и расчетные содержания, полученные по уравнению (2), а также абсолютные расхождения между ними для каждого из проверочных образцов приведены в табл. 4.

Экспериментальную проверку предложенного способа проводили на портативном рентгеновском сканирующем спектрометре «СПЕКТРОСКАН МАКС-GV». Использовали рентгеновскую трубку БХВ-17 (анод Pd), в спектре которой сильно выражена медная линия, кристалл-анализатор LiF[200], угол падения первичного излучения φ = 55°, угол отбора флу-

оресцентного излучения ψ = 40°, соответственно угол рассеяния θ = ψ + φ = 95°.

Измерение спектральных линий во втором порядке отражения проводили при напряжении на аноде рентгеновской трубки 40 кВ и силе тока 4 мА. Экспозиция составляла 2 с для каждой точки при сканировании по спектру и 100 с для каждой линии в режиме количественного анализа.

Рентгеновские спектры второго порядка отражения для когерентно и некогерентно рассеянных линий палладия и меди, измеренные при шаге сканирования 1 mÅ для аспирина, оргстекла и полиэтилена, приведены на рис. 2 и 3.

Как следует из приведённых рисунков, наилучшие условия измерения реализуются для когерентно и некогерентно рассеянных линий меди; линии палладия регистрируются на

Рис. 2. Рентгеновские спектры второго порядка отражения для когерентно и некогерентно рассеянных линий меди, измеренные на аспирине, оргстекле и полиэтилене

значительном фоне и когерентно рассеянная линия палладия при экспозиции 2 с не проявляется на коротковолновом склоне некогерентно рассеянной линии палладия.

В табл. 5 приведены составы органических соединений, по которым проводилась экспериментальная проверка способа. Как следует из таблицы, в градуировочные образцы, кроме трехкомпонентных органических соединений, были введены углеводороды и борная кислота.

Облучаемую поверхность образцов ограничивали диафрагмой диаметром 15 мм. Толщина твёрдых образцов (полиэтилен, оргстекло и спрессованная борная кислота) составляла

Рис. 3. Рентгеновские спектры второго порядка отражения для когерентно и некогерентно рассеянных линий палладия, измеренные на аспирине, оргстекле и полиэтилене

6, 10 и 10 мм соответственно. Сыпучие, пластичные материалы и жидкости помещали в кювету глубиной 10 мм. Поверхность образцов закрывали полиэтилентерефталатной пленкой толщиной 10 мкм. По нашим оценкам толщина насыщенного слоя в условиях возбуждения для спектрометра «СПЕКТРОСКАН МАКС-GV» для линии PdKα в органических соединениях составляет 20 мм, однако для светосильной рентгеновской оптики [5] в условиях проведения эксперимента глубина слоя, с которого производится отбор излучения, не превосходит 4 мм. Таким образом глубина отбора излучения была постоянной для всех образцов.

Таблица 5

Вещество	Химическая	С _н , мас. %	С _о , мас. %	С _с , мас. %
	формула			
Парафин	C ₁₈ H ₃₈	15.05	-	84.95
Полиэтилен	CH ₂	14.37	-	85.63
Пропиловый спирт	C ₃ H ₇ OH	13.41	26.62	59.96
Метиловый спирт	CH₃OH	12.58	49.93	37.49
Оргстекло	C ₅ O ₂ H ₈	8.05	31.96	59.98
Сахар	C ₁₂ H ₂₂ O ₁₁	6.48	51.42	42.11
Нафталин	C ₁₀ H ₈	6.29	-	93.71
Борная кислота	H ₃ BO ₃	4.89	77.63	17.48 (B)
Аспирин	C ₉ H ₈ O ₄	4.48	35.52	60
Ализарин	C ₁₄ H ₈ O ₄	3.33	26.67	70
Малеиновая кислота	$C_4H_4O_4$	3.47	55.14	41.39

Составы органических соединений, по которым проводили экспериментальную проверку способа ($C_{\rm H}, C_{\rm o}$ и $C_{\rm c}$ – стехиометрические содержание водорода, кислорода и углерода соответственно)

Рис. 4. Корреляция теоретических и экспериментальных интенсивностей для некогерентно рассеянной линии СиКα во втором порядке отражения. Материалы: 1 - парафин, 2 - полиэтилен, 3 - С₃H₈O, 4 - оргстекло, 5 - ализарин, 6 - CH₄O, 7 - аспирин, 8 - сахар, 9 - малеиновая кислота, 10 - борная кислота

Отношение $I_0^{cg} I I_0^{nc}$ линий палладия практически не зависит от толщины исследуемых образцов.

Для проверки качества измерения интенсивности когерентно и некогерентно рассеянных линий CuKa и PdKa интенсивности этих линий были рассчитаны теоретически.

На рис. 4 изображена корреляция экспериментальных (I^{nc} CuK α (2) эксп., имп/с) и расчётных (I^{nc} CuK α (2) расч., усл. имп/с) интенсивностей некогерентно рассеянной линии меди во втором порядке отражения. Коэффициент корреляции составил r = 0.984.

Коэффициент корреляции теоретических и экспериментальных отношений *I*^{cg}/*I*^{nc} линий палладия составил *r* = 0.961, что подтверждает предположение о независимости отноше-

Рис. 5. Экспериментальная градуировочная зависимость для определения водорода в органических соединениях (стех. – стехиометрическое содержание, рентг. – измеренное). Материалы: 1 - парафин, 2 - полиэтилен, 3 - С₃H₈O, 4 - оргстекло, 5 - сахар, 6 - нафталин, 7 - аспирин, 8 борная кислота, 9 - малеиновая кислота

ния *I^{cg}/I^{nc}* линий палладия от толщины измеряемых образцов.

Экспериментальная градуировочная зависимость для определения водорода в органических соединениях приведена на рис. 5.

Диапазоны содержаний элементов в исследуемых образцах органических соединений (C_{Min} и C_{Max}), градуировочные уравнения и полученные стандартные отклонения (S_0 , мас. %) для градуировочных характеристик по аналитам, приведены в табл. 6.

Из данной таблицы следует, что градуировочные уравнения, полученные предложенным способом для трехкомпонентных органических соединений, характеризуются высокой значимостью коэффициентов (отношение численного значения коэффициентов к их погрешностям) и

Таблица 6

Ана-	C _{Min} ,	C _{Max} ,	S ₀ ,	Уравнение
лит	мас.	мас.	мас.	
	%	%	%	
Н	3.47	15.5	0.25	$C_{H} = \frac{30.1}{(18.9)} + \frac{0.0013}{(7.9)} I_{CuK\alpha}^{nc} - \frac{0.00098}{(21.3)} I_{CuK\alpha}^{cg} - \frac{109.2}{(13.5)} I_{PdK\alpha}^{cg} / I_{PdK\alpha}^{nc}$
O**	0	77.63	1.0	$C_{O} = \frac{63.7}{(15.5)} + \frac{0.0067}{(27.7)} I_{PdK\alpha}^{nc} - \frac{0.015}{(53.1)} I_{CuK\alpha}^{nc} - \frac{0.0041}{(15.0)} I_{CuK\alpha}^{cg}$
C**	0	85.63	1.2	$C_{C} = \frac{0.0080}{(36.2)} I_{CuK\alpha}^{cg} + \frac{0.0056}{(6.2)} I_{PdK\alpha}^{cg} - \frac{72.9}{(8.8)} I_{PdK\alpha}^{cg} - \frac{29.4}{(5.9)} I_{PdK\alpha}^{nc} / I_{CuK\alpha}^{nc}$

Диапазоны содержаний элементов в исследуемых образцах органических соединений, градуировочные уравнения и полученные стандартные отклонения (S₀) для градуировочных характеристик

Примечания: ^{*} - под численными значениями коэффициентов уравнений в скобках приведены их значимости; ^{**} - нулевые значения для минимальных содержаний О и С обусловлены наличием среди градуировочных образцов парафина, полиэтилена и борной кислоты.

удовлетворительными остаточными погрешностями. Нами также была исследована возможность применения предложенного способа для анализа 4-компонентных соединений, включающих С, Н, О и N [6]. В этом случае использование 2 характеристических линий оказалось недостаточным, однако предварительные расчеты показали, что расширение спектрального диапазона с добавлением еще одной характеристической линии (ТіКа), позволяет получить удовлетворительные результаты и для этих соединений.

Таким образом, показана принципиальная возможность количественного рентгеноспектрального определения легких элементов, включая водород, в многокомпонентных органических соединениях с использованием коротковолнового рентгеновского излучения [7].

ЛИТЕРАТУРА

1. Прянишников Н.Д. Практикум по органической химии / 4-е издание. М.: Госхимиздат, 1956. 244 с.

2. Dwiggins C.W. Quantitative determination of low atomic number elements using intensity ratio of co-

herent to incoherent scattering of X-Rays determination of hydrogen and carbon // Anal. Chem.. 1961. V. 33. № 1. P. 67-72.

3. Плотников Р.И., Пшеничный Г.А. Флуоресцентный рентгенорадиометрический анализ. М.: Атомиздат, 1973. 264 с. С. 16-18.

4. Павлинский Г.В. Основы физики рентгеновского излучения. М.: Физматлит, 2007. 240 с. С. 95-113.

5. А.с. 614367 СССР. Флуоресцентный рентгеновский спектрометр / Анисович К.В., Комяк Н.И. // Заявлено 26.09.75. Опубликовано 05.08. 1978. Бюл. № 25.

6. Калинин Б.Д., Плотников Р.И., Речинский А.А. Применение рентгеновской спектрометрии для идентификации органических соединений и материалов // Аналитика и контроль. 2011. 2011. Т.15, № 1. С. 56-63.

7. Родинков О.В., Калинин Б.Д., Плотников Р.И., Речинский А.А. Спектрометр для определения легких элементов в органических соединениях // Патент на полезную модель № 98590 от 20 октября 2010 г. Заявка № 2010121549 от 28 мая 2010 г.

TO THE POSSIBILITY OF DETERMINING THE COMPOSITION OF ORGANIC COMPOUNDS BY THE INTENSITY OF SCATTERED X-RAY

B.D. Kalinin¹, R.I. Plotnikov¹, A.A. Rechinsky²

¹ "Precision technologies" Co.Lt., Saint-Petersburg ² "Weber CoMechanics SPB", Saint-Petersburg

The possibility of quantitative determination of hydrogen, carbon and oxygen in organic compounds using the coherent and incoherent scattered X-ray characteristic lines of the primary X-ray spectrum is demonstrated. For the models of organic compounds the intensities of coherent and incoherent scattered X-rays CuK α and PdK α were calculated, the calibration where performed and the analysis errors estimated. The experiments were performed with a portable x-ray spectrometer «SPECTROSCAN MAX-GV». The residual errors of calibration for all elements were satisfactory.

Key words: X-ray spectrometer, X-ray analysis, light elements, hydrogen, carbon, oxygen, organic compounds, mass differential scattering coefficients, coherent and incoherent scattering, X-ray calibration.